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A CLASS OF SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS 

IN A TWO-DIMENSIONAL ELASTICITY THEORY 

Yu. A. Bogan UDC 539.3 

In studying boundary value problems for an elastic medium reinforced by a family of very 
stiff fibers, authors are frequently concerned with the limiting case model of an elastic 
medium with inextensible fibers, i.e., deformation along a specified direction is equal to 
zero [i]. With the exception of [2], little attention has been devoted to ascertaining the 
correctness of this limiting model; in [2], under rather stringent assumptions concerning 
the boundary of the domain, consideration was given to a boundary value problem with a speci- 
fied stress vector on the boundary for a medium inextensible in a given direction and with 
direct reinforcement. 

Here we prove a series of theorems concerned with the convergence of singularly perturbed 
problems of a given class to limiting solutions in corresponding Hilbert spaces; we also show 
that the limiting system of equations cannot coincide with the system resulting from the as- 
sumption of inextensibility. A concrete example of a similar situation appears in [3]. 

i. In a curvilinear orthogonal coordinate system in the plane, (al, a2), we take the 
generalized Hooke's Law for an orthotropic material in the form [4] 

(~11 --- 8 -2 r  b12e22, 0"22 : :  bl2ell ~- b22e22, (~12 =:  2e12, ( 1 . 1 )  

where the dimensionless stresses are taken with reference to the shear modulus G; the axes 
of orthotropicity coincide with the (~i, ~2) axes; E -2 = b11G -I >> i; s << i; b22 - E2b122 > 0; 
b22 > 0. Deformations may be represented in terms of displacements u = (ul, u 2) in the fol- 
lowing way: 

i Ou 1 t Oh 1 
b'11 hl Off, 1 "a t- hlh--" ~ 0o~ 2 U2', 

e~,,= 7~-2 ~-~2 + hah--~ ocr 

h I and h 2 are the Lame parameters (hl, h 2 ~ const > 0, hk.a. (k, j = 1.2)), measurable and 
3 

bounded in a compact simply connected domain Q with a piecewise-smooth boundary ~. We intro- 
duce the Hilbert space V of functions v = (v l, v2), Vk~ L2(Q) (k = 1.2) with the finite norm 
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~t i,~.:~ " 
dQ = h~h..,da~da~ 

and the scalar product corresponding to this norm. 

2. We consider a mixed problem of elasticity theory with given volume forces and a 
given stress vector on a portion y= of the boundary. We assume that 7 is representable in 
the form of the union y = y~ U ~z, where X2 consists of connected components of the boundary 
with equation ~2 ~ const, the linear measure of Yl is different from zero, and 71 13 Y2 = ~" 
We note that an inequality of Korn's type [5] is valid in V: There exists a positive con- 
stant c < 0 such that 

\ i , j~ l  

We s h a l l  p r e s e n t  a v a r i a t i o n a l  f o r m u l a t i o n  o f  t h e  p r o b l e m w i t h o u t  w r i t i n g  down e x p l i c i t l y  
t h e  c o m p l i c a t e d  s e t  o f  e q u a t i o n s  o f  e l a s t i c i t y  t h e o r y .  L e t  V 0 be a c l o s e d  s u b s p a c e  o f  V 
c h a r a c t e r i z e d  by t h e  c o n d i t i o n  v l u  ~ = O. We need  t o  d e t e r m i n e  a t w o - c o m p o n e n t  f u n c t i o n  
u ~ = (u~ e ,  u : ~ ) ~ Y 0 ,  s u c h  t h a t  f o r  e v e r y  v ~  Y 0 we have  t h e  i n t e g r a l  i d e n t i t y  

,f ~ (u~) e i~ (v) dQ = y ~ (at) vt~lt~d~ + f F~v~dQ (2 .1 )  
q ~ 

( r e p e a t e d  i n d i c e s  i n d i c a t e  summat ion  f rom 1 t o  2 ) ,  

~ 2 1 ~ = % ( a ~ ) ,  ~ i lv~=%@~) ,  r  ~(?2), F~, F 2 ~ L  2(Q). 

LEMMA. For e > 0 sufficiently small there exists a unique solution of the problem (2.1) 
and the following estimates, uniform with respect to E: 

II [[4 II II  (Q) k = 1, 2, 
( 2 . 2 )  

S ince  t h e  p r o o f  o f  t h i s  lemma p a r a l l e l s  t h a t  o f  Theorem 1 i n  [ 6 ] ,  we s h a l l  no t  s u p p l y  i t  he re .  

I t  f o l l o w s  f rom t h e  Lemma t h a t  f rom t h e  sequence u e we can s e l e c t  a subsequence ( f o r  
which we retain the previous notation) such that u ~ § u ~ weakly in V 0 and strongly in Li(Q), 
in accordance with an imbedding theorem due to Rellich. It follows from the last inequality 
in (2.2) that ell(u e) § 0, strongly in Li(Q), and, therefore, ell(u ~ = 0, almost every- 

where. We now put K = {v~ V0; e11(v) = 0}. It is obvious that K is a closed subspace of 
V 0. We examine two particular cases: 

i) p = [i/(hlhi)][(Shl/8~2) ] ~ 0; 2) p = 0. 

The function p has the geometric meaning of curvature of the family of curves ~2 ~ const. In 
case 1 

o h 2 . Ou~ 
u~ %% 0~  ~ H~ (q)~ ~ ~ H~ (Q)' 

and we t h e r e f o r e  have  f o r  u~ ~ t h e  f i n i t e  norm 

L3,S=O 1 Oa2 0 ~  O~s 

According to a theorem of Banach concerning isomorphism, we can identify K with the space 
of functions L obtained upon completion of the functions v in the class C~(Q) with respect 
to the norm (2.3), such that vlx I = 0, ~v/3~i[71 = 0. We now consider the integral identify 

(2.1) on functions v~ K and we pass to the limit along the already chosen subsequence. We 
find that u ~ = (ul ~ ui~ ~ K satisfied the identity 

.[ [b22e~2 (u ~ e22 (v) + 4el2 (it ~ e12 (v)] dQ = ,f ~h (al) vhhadal + .I FhvhdQ (2.4) 
Q V 2 Q 

for all v = (vl, v 2) ~ K. 
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The limit problem consists in the determination of the functions u~ ~ The differential 
equation for u~ ~ is of the fourth order, of composite type with a double family of real char- 
acteristics a2 - const. The uniqueness of the solution of problem (2.4) is a consequence of 
Korn's second inequality: on V0 we have the inequality 

j' [ell (U) -~ b22c~2 (U) -~ ,tei2 (U)] dQ >1 cl[ vile, o. ( 2 . 5 )  
Q 

I n  t h e  i n e q u a l i t y  ( 2 . 5 )  we p u t  v = u ~ t o  o b t a i n  

~0 (.0 u~ > c H"~ LLL 

where a~ ~ v) is the bilinear symmetric form appearing in the left member of the equation 
(2.4). It follows from the uniqueness of u ~ that, in fact, the entire sequence u s converges 

weakly to u ~ . 

THEOREM i. For g + +0 and p ~ 0 the solution of the problem (2.1) converges weakly in 
V 0 to the solution of the problem (2.4). 

3. In Case 2 the subspace K is characterized by the condition 8vl/aa I = 0. On Yl we 
have v I = 0 by hypothesis, and, from an inequality of Poincare type, 

v~dO ~ c.f [ ~ dO Q Q kO~l] 

i t  f o l l o w s  t h a t  u l  ~ = 0 a l m o s t  e v e r y w h e r e  in  Q. Then 

a.~ 2e~2(u ~  h2 0 (~_~  t 

C o n s i d e r i n g  t h e  i n t e g r a l  i d e n t i f y  ( 2 . 1 )  on K and t h e n  p a s s i n g  t o  t h e  l i m i t  f o r  s ~ +0,  we 
find that u2 ~ is a solution of the variational problem 

ytb~2e22 (u ~ e22 (v2) + 4e~2 (u~ e~2 (v)] dQ = S ~2 ~ )  v2h~da~ + ~ F2vflQ ( 3.1 ) 
q ~ Q 

f o r  e v e r y  v z ~ H l ( Q ) ,  v 2 [ ~ l  = 0. The e q u a t i o n  f o r  u2 ~ i s  e l l i p t i c ;  t h e  p r o b l e m  ( 3 . 1 )  has  a 
u n i q u e  s o l u t i o n  f o r  r  L 2 ( ~ 2 ) ,  F2 ~ L 2 ( Q ) .  From t h e  u n i q u e n e s s  o f  t h e  l i m i t  i t  f o l l o w s  
t h a t  t h e  i n i t i a l  s e q u e n c e  u s c o n v e r g e s  t o  u ~ 

THEOREM 2. In  Case  2 t h e  s o l u t i o n  o f  t h e  p r o b l e m  ( 2 . 1 )  c o n v e r g e s  w e a k l y  in  V 0 t o  t h e  
s o l u t i o n  o f  t h e  p r o b l e m  ( 3 . 1 ) .  

4.  L e t  h i ,  h 2 = 1; l e t  t h e  ( a  1, a 2) c o o r d i n a t e  s y s t e m  c o i n c i d e  w i t h  t h e  o r t h o g o n a l  
C a r t e s i a n  ( x l ,  x 2) c o o r d i n a t e  s y s t e m ;  l e t  O be t h e  p l a n a r  r e c t a n g l e  Q = { (x  1, x 2 ) ;  0 ~ x 1 i 1, 
0 5 x2 ! h}.  We t a k e  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  mixed  p r o b l e m  t o  be d i f f e r e n t  f rom 
t h o s e  in  Sec .  1: 

E 
ukl~=o ,h=  O, alh (~8) 1~=o,~ = O, k = t ,  2. ( 4 . 1 )  

We now examine the limiting behavior as s ~ +0 of the problem (4.1). In this limiting pro- 

cess the estimates (2.2) are preserved; let V 0 = Iv = (v I, v2), vk~Hl(Q), Vk[x2=0,h = 0, 

k = 1.2}. As we did before, we can select from the sequence u s a subsequence (for which we 

retain the previous notation) converging weakly in V 0 to the element u ~ = (ul ~ u2 ~ ~Vo; 
moreover, 8u1~ = 0, ul ~ = u1~ ul~ = ul~ = 0 (in the weak sense). Let K be 
a subspace of V 0 characterized by the condition 8vl/3x I = 0. We consider the integral identity 

,I a~j ~e) e~j (v) dx = .[ Fhvhdx ( 4.2 ) 
Q Q 

on t h e  s u b s p a c e  K, and we l e t  r + +0. We f i n d  t h a t  Ul ~ and u2 ~ s a t i s f y  t h e  i n t e g r a l  i d e n t i t y  

( 4 . 3 )  

for every v = (v~, V2)~K. The integral identity (4.3) can be written in the form 

h h 

~ [ b 2 ~  +-~ 'x~jdx  + dx. (t, X2)-- ( 4 . 4 )  
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h h 
~OVl y ~ ,  

o o 
1 

+ J 71 (xj = .t' F, (<, x,)dx,. 
q 0 

S i n c e  u l  ~ ~ Hi(Q) and depends  o n l y  on x2,  i t  f o l l o w s  t h a t  u l  ~ ~ H 0 1 ( 0 ,  h ) .  The u n i q u e n e s s  
o f  t h e  s o l u t i o n  o f  t h e  l i m i t  p rob lem i s  o b v i o u s  ( t h e  d i f f e r e n c e  o f  two s o l u t i o n s  can o n l y  be 
a r i g i d  d i s p l a c e m e n t ,  wh ich ,  in  v iew o f  t h e  homogeneous bounda ry  c o n d i t i o n s  f o r  x 2 = 0 and h,  
v a n i s h e s ) .  The f u n c t i o n s  u~ ~ and u2 ~ s a t i s f y ,  in  t h e  s e n s e  o f  d i s t r i b u t i o n s ,  t h e  sy s t em o f  
e q u a t i o n s  

O2u o O2u o 

b2= 0%] + ex--7~ = 1% �9 ( 4 . 5 )  
0%0 

o [ u o ( l , x ~ ) _  ~ an (0, xO] = / q  
Ox~ Ox, a 

and the boundary conditions 

u ~ l ~ = 0 . ~ = 0  , k = t ,  2, ~ + a , ~ t h = 0 , 1 = 0 .  (4.6) 

Moreover, u2~ ~HI(Q), u~ ~H~(0, h). 

THEOREM 3. As s ~ +0, the solution of the boundary value problem (4.1) converges weakly 
in V 0 to the solution of the boundary value problem (4.5), (4.6). 

From the second of the equations (4.5) we can determine ul~ as a function of Fl and 
u2 ~ and obtain for u2 ~ a nonlocal boundary value problem. 

5. For media inextensible in the direction of the ~1-axis, the law relating the stresses 
and strains has the form 

a n  = q ~- bl2ez2~ a~2 = b2~e22, al, = 2e12, e11= 0~ ( 5 . 1 )  

where q i s  a new unknown f u n c t i o n  ( L e g e n d r e  m u l t i p l i e r ) w h o s e  p h y s i c a l  meaning has  t o  do w i t h  
t h e  r e a c t i o n  o f  t h e  medium t o  t h e  p r e s e n c e  o f  a k i n e m a t i c  c o n s t r a i n t .  As i s  t h e  c a s e  in  t he  
solution of boundary value problems for the Navier-Stokes equations, q can be determined in- 
dependently from the field of displacements. We write the system of equations corresponding 
to the law (5.1) in the differential form 

L~ (u) = __ea~, (h~q) + P~ (~) = ~ h / ~ ,  ( 5 . 2 )  

L 2 (u) = - -  (q + b12e22 (u)) ~-~ -F P2 (u) = F j q h 2 ,  ell (u) = O. 

Let  K be a s u b s p a c e  o f  V 0 c h a r a c t e r i z e d  by t h e  c o n d i t i o n  e ~ s ( v )  = 0. I f  t h e  f i r s t  e q u a t i o n  
o f  t h e  s y s t e m  ( 5 . 2 )  i s  m u l t i p l i e d  by vz ,  t h e  second  by v 2, and i f  we add t h e  r e s u l t i n g  equa-  
t i o n s  and make an i n t e g r a t i o n  by p a r t s ,  we f i n d  t h a t  uz and u 2 s a t i s f y  t h e  i n t e g r a l  i d e n t i t y  
( 2 . 4 ) ,  t h e  t e rm w i t h  q d r o p p i n g  o u t  due t o  t h e  f a c t  t h a t  (q ,  % s ( U ) ) L 2  = 0. C o n v e r s e l y ,  i f  
it is known, with respect to a generalized solution of the system (5.2), that it is suffici- 
ently smooth, we can transform the identity (2.4) to the form 

I [(Pl (u) - FI) vl + (P2 (u) - F2) v=l dQ = 0 
Q 

for v EK. But it then follows from the results given in [7] (Corollary 4.1) that there 
exists a function q~ L2(Q) such that, in the sense of distributions, the system of equations 
(5.2) is valid. 

THEOREM 4. As E + +0, the solution of the problem (2.1) converges strongly to u ~ in V0; 
moreover, flu s - u~ < cs. 

We assume, for simplicity, that the boundary conditions on ~ are homogeneous. Then 
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In Eq. 

a ~. (u ~ - -  ,lO, v) = .f e--~ (u a) e,, (v) dQ + .[ b....e.. 2 (ue _ uo) e~. (v) dQ+ 
q q 

-1- f 4ea2 (u ~ - -  u") e12 (v) dQ = - -  ~ qe n (v) dQ. 
o Q 

(5.3) we put v = u s -- u ~ and we estimate the right side as follows: 

(5.3) 

Therefore 

qe,~ (u ~ - -  u") dQ < II q IlL 211 en (u~) itL~ <'~ b II e~, (n ~) I1[~ + "-2 II q IlL "z. 

b ~ f4e~2 u o) Cl l[ L'e --  l'~ li~~ < E~22,i e211(l~t~) dQ -~ ,122e22 (/'/t~ - -  l~~ dQ "~- , (u ~ - d.Q < -~ ]] q lFL2 
q Q Q 

It follows from this that 

f lue -u~  < c2e' ]le-2e1~ ( U g l I L ~  Ca ( 5 . 4 )  

and the constants c 2 and c 3 do not depend on s. It follows from the second of the inequali- 
ties (5.4) that e-2ell(u s) converges to the function weakly in L2(Q). Apparently, q and q0 
are coincident. 

6. In the above we have assumed that the volume forces did not depend on s. Then, in 
the limit the deformation ell(U ~ = 0. However, a situation is possible in which el1(u o) # 0. 
Let Q be a bounded domain on the plane, let the system of orthogonal coordinates be Cartesian, 
and on the boundary of the domain, let us specify zero displacements. The variational prob- 
lem is formulated in the following way: Determine a two-component function u s ~[H01(Q)] 2, 
satisfying for every v = (vl, v 2) ~ [H01(Q)] 2 the integral identity 

a ~ (u ~, v) = y [Fle-?v , -t- F2v21 dx, F1, F 2 ~ L 2 (Q). ( 6 . 1 )  
Q 

A s i m i l a r  k i n d  o f  d e p e n d e n c e  o f  t h e  r i g h t  s i d e  on s can  be o b t a i n e d  i f  we a s s u m e  t h a t  i n i -  
t i a l l y  we h a v e  n o n z e r o  d i s p l a c e m e n t s  s p e c i f i e d  on t h e  b o u n d a r y .  I n  r e d u c i n g  o u r  p r o b l e m  t o  
a h o m o g e n e o u s  o n e ,  we o b t a i n  t h e  i n t e g r a l  i d e n t i t y  ( 6 . 1 ) .  I n  t h i s  c a s e  t h e  norm o f  u z i s ,  
g e n e r a l l y  s p e a k i n g ,  u n b o u n d e d  i n  [H01(O)]  2 L e t  u s  e x a m i n e  t h e  l i m i t i n g  b e h a v i o r  o f  t h e  
p r o b l e m  ( 6 . 1 )  a s  s + +0.  

We i n t r o d u c e  t h e  H i l b e r t  s p a c e  W o f  f u n c t i o n s  o b t a i n e d  upon  c o m p l e t i o n  o f  f u n c t i o n s  o f  
the class C0~(Q) in the norm 

fo.l ]ax 
llutlw = u ~ + k o z ,  l J " 

The following Poincare type inequality holds on functions from W: 

! u2dx <~ c [ [ o~ ]3 dx 

We c a n  show t h a t  f u n c t i o n s  f r o m  W as sume  a z e r o  v a l u e  i n  t h e  mean on an a r b i t r a r y  c o n n e c t e d  
c o m p o n e n t  o f  t h e  b o u n d a r y  h a v i n g  no h o r i z o n t a l  t a n g e n t .  

THEOREM 5.  As e § +0 ,  u l  E c o n v e r g e s  w e a k l y  i n  W t o  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  

a2u~ L~ 

and  u2 s c o n v e r g e s  w e a k l y  i n  H01(Q) t o  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  

2 0  2 0  O~u 0 

'~'~ ~ "~ b ' ~~ I4'(Q). ( 6 . 2 )  b22 ~ + Oz~ = F., - -  (t + 12) ~ 1  2 ~ 

We note that the right side of equation (6.2) belongs to H-I(Q). The proof of Theorem 5 is 
analogous to the proof of Theorem 3 in [8]; it is therefore omitted here. 
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CONTACT PROBLEM OF THE THEORY OF ELASTICITY FOR PRESTRESSED BODIES 

WITH CRACKS 

I. I. Kudish UDC 539:539.3 

Fatigue-test results often have a large scatter, which is generally related to a range 
of uncontrollable factors including the structure of an residual-stress distribution in the 
surface layers of the material, errors in assembly of the part, instability of the regime 
parameters and lubricant properties, etc. The effect of some of these factors on the per- 
formance of machine parts such as bearings was examined in [i]. There has been less study of 
the effect of residual stresses unavoidably created by some type of treatment (thermal, ther- 
mochemical, mechanical work-hardening, etc.) on the contact fatigue of materials. This topic 
has been investigated only by experimental method, and the available literature sources do 
not offer an unambiguous treatment of this subject. For example, in [2] (p. 227), the authors 
dispute that residual stresses have a significant effect on the fatigue of bearing steels. 
Several authors [3-7] hold that the retardation of fatigue is favorably influenced by compres- 
sive residual stresses and unfavorably influenced by tensile residual stresses. Other studies 
[8] indicate that compressive stresses are intolerable and that small tensile residual stress- 
es are useful. Thus, the question of the usefulness and measurement of the effect of residual 
stresses on fatigue fracture remains unanswered. 

Experimental studies were made in [9, i0] on the effect of shear stresses on contact 
fatigue. It was found that such stresses have an adverse effect on the fracture process. 

Here we propose a mechanical model for the combined effect of normal and shearing con- 
tact stresses on fracture on the one hand and, on the other hand, the effect of residual 
stresses in the surface layers on fracture. The problem is examined in an elastic formula- 
tion and is reduced to a system of integral and integrodifferential equations with additional 
conditions in the form of equalities and inequalities. A solution is obtained by asymptotic 
methods. We determine the distribution of contact stresses and the stress intensity factors 
at the crack: tips. An analysis is made of the effect of different levels of shearing contact 
stresses and residual stresses, as well as their sign (tensile or compressive), on the stress 
intensity factors. Numerical results are presented. 

Thus, on the basis of analysis of the proposed model, it is possible to comparatively 
evaluate the effect of the above-mentioned factors on contact fatigue. 
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